金属活动性

更新时间:2024-05-21 12:49

金属活动性指金属单质在水溶液中失去电子生成金属阳离子的倾向,属于热力学范畴。

应用

化学

部分金属的活动性顺序如下:

由金属活动性顺序表可以得到以下结论:

在判断溶液中的置换反应能否发生,以及发生置换反应的次序时,使用它是一种很简便的办法。

生产

金属活动性可以预言金属矿石的提炼难易程度,如排在末位的一些金属,加热即可使他们从氧化物中分解出来,而排在最前面的金属,则需要使用电解法(如钠)或活泼金属置换法(如钾)来提取。

金属活动性还可以预言金属被腐蚀的难易程度,如金即使加热也不与氧反应,而铁、铜在空气中会缓慢生锈,钠、钾等金属在空气中则极容易与氧化合,一般只能现取现用。

发展历史

1865年,贝开托夫在实验的基础上,根据金属和金属离子间相互置换能力的大小,以及金属跟酸、跟水等反应的剧烈程度,首先确定了金属活动性顺序,在这个顺序里已包括了氢。因为氢可以被位于它前面的金属从稀酸里置换出来,而氢后面的金属不能从酸中置换出氢。

在电化学得到发展后,金属活动性的衡量尺度变为金属的标准电极电势,电势越负者还原性越强,金属活动性也越强。

注:由此可以看出,金属活动性与金属性是不同的概念,不可混为一谈。金属在水中的活动性也不能体现金属在所有情况下的性质,例如钾的金属活动性强于钠,但钠可以置换出熔融氯化钾中的钾。

影响因素

决定金属活动性的函数是金属的标准电极电势(E∅)与跟水反应的标准吉布斯自由能(△G∅),它们的计算公式及之间的转化公式为: ,因此电极电势越负,自由能越大,活动性也越强。

自由能的一个影响因素是焓变(△H)。金属单质在水中形成阳离子时,经历了升华,电离,水合三步,这三步中都有能量变化,决定了总反应焓变,对金属的活动性有很大影响。因此在分析金属活动性成因时,要综合考虑金属的升华能、电离能与水合热。

一般来说,元素周期表内元素从上到下,从右到左有活动性增强趋势,其本质原因是随着金属半径增大,最外层电子数减少,其电离能与升华能均有下降,虽水合热亦有下降,但前两者已足够弥补。但对于一些特殊的例子,如锂,由于其半径极小,水合热足够高,弥补了升华热与电离能偏高的不足,导致它在水中的活动性甚至比铯还要高。

完整的活动性顺序

注:由于金属活动性的判定依据是金属的标准电极电势,而金属性只与金属失电子能力有关,因此会产生金属性与金属活动性不一致的情况.。

另外,一些金属的活动性会受到溶剂,酸碱值,以及沉淀剂等的影响,而金属活动性顺序表的测定条件是热力学标准状况,此时pH=0,所以活动性顺序只能作为大部分情况下适用的参照,在特殊情况下需要计算非标准电极电势。

在水中,锂是活动性最高的金属。虽然锂是碱金属中金属性最弱的元素,但是由于锂原子和离子半径小,离子静电场力较大,导致Li+的水合能特别高,掩盖了锂元素升华能与电离能偏高的短板,使其成为水中活动性最高的金属。而锂与水的反应缓慢,一方面是因为锂的升华能和熔点相对较高,使反应在动力学上受阻;另一方面,同样由于较高的水化能,反应产物氢氧化锂的化学键共价倾向显著、溶解度较小,刚开始会附着在锂的表面阻碍反应,随着氢氧化锂的溶解,速率才稍有加快。

一般认为同位素化学性质相同,但在氘中的中子会影响质子间的相互作用,所以实际上氘气比氕气活泼。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}